Infinite Series

 $\frac{\lim_{n\to\infty}\frac{\ln(n)}{n}=0}{\operatorname{geometric}\left(x^{n}\right):\text{in form}\sum_{ar^{n-1}}x^{n}=1 \text{ for } x>0} \left|\lim_{n\to\infty}x^{n}=0 \text{ for } |x|<1\right| \left|\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}\right| \left|\lim_{n\to\infty}\frac{x^{n}}{n!}=0 \frac{x^{n}}{1-r}\right| = 0$ harmonic $\left(\frac{1}{n}\right)$: diverges; alternating harmonic: converges telescoping $\left(\frac{1}{n(n+1)}\right)$: converges $\frac{p\text{-series}\left(\frac{1}{n^{p}}\right)\text{: conv. if } p>1\text{; div. if } p<1\text{; alt. } p-\text{series: abs. conv. if } p>1\text{, cond. conv. if } 0\leq p\leq 1$ Nth Term Test for Divergence: take $\lim_{n\to\infty}a_{n}\begin{cases} \text{if }\neq 0\text{ or does not exist, } a_{n}\text{diverges}\\ \text{if }=0\text{, try something else} \end{cases}$ Integral Test: take $\int_{1}^{\infty} a_n dn \begin{cases} if = \pm \infty, a_n diverges \\ if \neq \pm \infty, a_n converges \end{cases}$ (if a_n < b_n and b_n converges, then a_n converges **Direct or Basic Comparison Test:** use a_n to find $b_n \{ if a_n > b_n and b_n diverges, then a_n diverges \}$ any other situation, try something else if > 0 and $\neq \infty$, a_n and b_n act the same Limit Comparison Test: use a_n to find b_n , take $\lim_{n \to \infty} \frac{a_n}{b_n} \begin{cases} if = 0 \text{ and } b_n \text{ convergent, } a_n \text{ convergent, } a_n \text{ convergent, } a_n \text{ divergent, } a_n \text{ d$ Ratio Test: take $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \begin{cases} \text{if } <1, a_n \text{ abs. converges} \\ \text{if } >1, a_n \text{ diverges} \\ \text{if } =1, \text{ try something else} \end{cases}$ For Alternating Series: Try ACT by using any positive term test: If $|a_n|$ converges: series has absolute conv. If $|a_n|$ not convergent then try Leibnitz: Root test: take $\lim_{n\to\infty} \sqrt[n]{a_n} \begin{cases} \text{if } <1, a_n \text{ converges} \\ \text{if } >1, a_n \text{ diverges} \\ \text{if } =1, \text{ try something else} \end{cases}$ If all parts true: series has conditional conv. If not all true: series is divergent

Absolute convergence theorem for alternating series (ACT): if $|a_n|$ converges, then a_n converges

Rearrangement thm: if a_n converges absolutely and b_n is rearrangement of a_n , then b_n converges.

Alternating Series Test (Leibnitz thm): $\sum (-1)^n b_n$ converges if all are true $\begin{cases} all \ b_n \text{ are positive} \\ b_{n+1} \leq b_n \\ \lim_{n \to \infty} b_n \to 0 \end{cases}$

What test do I use? (In general: look for patterns, reduce with algebra, write out terms)

1. Is there a pattern?

- a. Geometric
- b. Harmonic
- c. Telescoping
- d. p-series

2. Is it a positive term series?

- a. Has n! or n as an exponent: try Ratio test
- b. Entire series is to a power of n: try Root test
- c. an is easy to integrate: try Integral test
- d. There are 'extra' constants or series is close to a pattern: try Direct/Basic Comparison Test
- e. At a loss or no results from Direct/Basic Comparison Test: try Limit Comparison Test

3. Is it an alternating term series?

- a. First try the Absolute Convergence Theorem (ACT)
- b. If not convergent under ACT, try Alternating Series (Leibnitz)Test

4. Still at a loss?

- a. Rearrange terms and try Rearrangement Theorem
- b. Use Nth Term Test for Divergence

Estimating the Sum of a Series: $s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$

POWER SERIES (centered at a)

form is
$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + ...$$

Test for convergence by using Root or RatioTest (usually) and Alternating Series Test

Only three possible outcomes:

- 1. Result of Test is ∞ , then series **converges only when x = a**
- 2. Result of Test is zero, then series converges (absolutely) for all values of x

3. Result of Test is **some expression involving |x|**, then series has **interval of convergence** (check each endpoint of interval by subbing into original power series).